Monocular Depth Estimation
Monocular depth estimation is the task of estimating the depth value of each pixel relative to the camera given a single RGB image. This task is a key prerequisite for scene understanding in applications such as 3D scene reconstruction, autonomous driving, and augmented reality. Current mainstream methods include designing complex networks to directly regress depth maps, or segmenting the input into multiple intervals to reduce computational complexity. Common evaluation metrics include Root Mean Square Error (RMSE) and Absolute Relative Error.
NYU-Depth V2
HybridDepth
KITTI Eigen split
SPIDepth
KITTI Eigen split unsupervised
SPIDepth(MS+1024x320)
ETH3D
Distill Any Depth
NYU-Depth V2 self-supervised
IndoorDepth
Make3D
GCNDepth
Mid-Air Dataset
DDAD
AFNet
IBims-1
Miangoleh et al. (SGR)
SCARED-C
AF-SfMLearner
Cityscapes
SwinMTL
SUN-RGBD
VA (Virtual Apartment)
DistDepth
KITTI
MonoViT
Middlebury 2014
Miangoleh et al. (MiDaS)
Cityscapes 3D
TaskPrompter
DIML Outdoor
DIODE Indoor
DIODE Outdoor
ScaleDepth-NK
Hypersim
KITTI Object Tracking Evaluation 2012
PackNet-SfM
Matterport3D
UASOL
Virtual KITTI 2