HyperAI超神经

Semantic Segmentation On S3Dis Area5

评估指标

Number of params
mAcc
mIoU
oAcc

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Number of paramsmAccmIoUoAcc
self-positioning-point-based-transformer-forN/A76.470.890.7
point-is-a-vector-a-feature-representation-in-78.172.391
dino-in-the-room-leveraging-2d-foundation--74.1-
kpconv-flexible-and-deformable-convolution14.1M72.867.1-
pointmixer-mlp-mixer-for-point-cloud6.5M77.471.4-
tangent-convolutions-for-dense-prediction-inN/A62.2--
point-cloud-oversegmentation-with-graph290K68.261.787.9
dilated-point-convolutions-on-the-receptiveN/A-61.28-
190910469N/A68.361.8587.18
segcloud-semantic-segmentation-of-3d-pointN/A57.448.9-
window-normalization-enhancing-point-cloudN/A77.971.491.1
scalable-3d-panoptic-segmentation-with0.21-68.1-
swin3d-a-pretrained-transformer-backbone-forN/A80.574.592.7
point-transformer-1N/A-41.1-
subspace-prototype-guidance-for-mitigating-79.573.391.9
mamba24-8d-enhancing-global-interaction-in--73.5-
condaformer-disassembled-transformer-with-1-78.973.592.4
serialized-point-mamba-a-serialized-point--70.6-
scf-net-learning-spatial-contextual-featuresN/A71.863.787.2
efficient-3d-semantic-segmentation-with-1212K77.368.989.5
deep-fusionnet-for-point-cloud-semanticN/A72.367.2-
anisotropic-separable-set-abstraction-forN/A-66.8-
window-normalization-enhancing-point-cloudN/A78.272.291.4
towards-large-scale-3d-representationN/A78.272.791.5
surface-representation-for-point-clouds0.97M76.068.990.2
point-transformer-v3-simpler-faster-stronger-80.174.792.0
a-large-scale-network-construction-and31.2M78.773.592.0
stratified-transformer-for-3d-point-cloud8.0M78.172.091.5
kpconvx-modernizing-kernel-point-convolution-78.773.591.7
deep-parametric-continuous-convolutional-1N/A67.0--
meta-architecure-for-point-cloud-analysisN/A-71.3±0.7-
pointnet-deep-learning-on-point-sets-for-3dN/A49.0--
patchformer-a-versatile-3d-transformer-basedN/A-67.3-
point-transformer-v2-grouped-vector-attentionN/A78.072.691.6
beyond-local-patches-preserving-global-local-80.273.693.0
exploring-data-efficient-3d-scene--72.2-
semantic-segmentation-for-real-point-cloudN/A73.165.488.9
point-transformer-1N/A-57.3-
contrastive-boundary-learning-for-point-cloudN/A77.971.691.2
interpretable-edge-enhancement-and8.1M78.172.291.3
pointnext-revisiting-pointnet-with-improved41.6M77.271.191.0
decoupled-local-aggregation-for-point-cloud7.0M80.074.192.2
模型 43--72.6-
exploiting-local-geometry-for-feature-and--69.489.4
virtual-multi-view-fusion-for-3d-semanticN/A-65.38-
pointhr-exploring-high-resolution-78.773.291.8
sonata-self-supervised-learning-of-reliable-81.676.093.0
deepgcns-making-gcns-go-as-deep-as-cnnsN/A-52.49-
lcpformer-towards-effective-3d-point-cloudN/A76.870.290.8
point-transformer-17.8M76.570.490.8
sat-size-aware-transformer-for-3d-point-cloudN/A78.872.6-
4d-spatio-temporal-convnets-minkowski37.9M71.765.4-
omnivec-learning-robust-representations-with--75.9-
cga-net-category-guided-aggregation-for-pointN/A-68.6-
ponderv2-pave-the-way-for-3d-foundataion-79.073.292.2
mugnet-multi-resolution-graph-neural-networkN/A-63.588.1
pointcnn-convolution-on-x-transformed-pointsN/A--85.9
pointweb-enhancing-local-neighborhoodN/A--87.0
ckconv-learning-feature-voxelization-for-75.167.789.6
large-scale-point-cloud-semantic-segmentation280K66.558.0486.38