HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
点云配准
Point Cloud Registration On Kitti Trained On
Point Cloud Registration On Kitti Trained On
评估指标
Success Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Success Rate
Paper Title
Repository
FCGF+PointDSC
96.76
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
GeoTransformer
67.93
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
YOHO-O
81.44
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
GeDi
98.92
Learning general and distinctive 3D local deep descriptors for point cloud registration
FCGF
24.19
Fully Convolutional Geometric Features
YOHO-C
82.16
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
SpinNet
81.44
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
D3Feat-pred
36.76
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
Greedy Grid Search
90.27
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
FCGF+SC2-PCR
97.66
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
-
Exhaustive Grid Search
94.95
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
Predator
41.20
PREDATOR: Registration of 3D Point Clouds with Low Overlap
FPFH+PointDSC
94.05
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
DIP
93.51
Distinctive 3D local deep descriptors
0 of 14 row(s) selected.
Previous
Next