HyperAI超神经

Node Classification On Non Homophilic 13

评估指标

1:1 Accuracy

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称1:1 Accuracy
large-scale-learning-on-non-homophilous84.71 ± 0.52
large-scale-learning-on-non-homophilous81.63 ± 0.54
revisiting-heterophily-for-graph-neural82.73 ± 0.52
graph-attention-networks81.53 ± 0.55
breaking-the-limit-of-graph-neural-networks74.32 ± 0.53
predict-then-propagate-graph-neural-networks74.33 ± 0.38
combining-label-propagation-and-simple-models-174.28 ± 1.19
large-scale-learning-on-non-homophilous74.13 ± 0.46
revisiting-heterophily-for-graph-neural85.95 ± 0.26
mixhop-higher-order-graph-convolution83.47 ± 0.71
large-scale-learning-on-non-homophilous80.69 ± 0.36
finding-global-homophily-in-graph-neural85.57 ± 0.35
generalizing-graph-neural-networks-beyond81.31 ± 0.60
combining-label-propagation-and-simple-models-178.40 ± 3.12
revisiting-heterophily-for-graph-neural73.61 ± 0.40
revisiting-heterophily-for-graph-neural84.95 ± 0.43
large-scale-learning-on-non-homophilous80.79 ± 0.49
simplifying-graph-convolutional-networks76.09 ± 0.45
revisiting-heterophily-for-graph-neural85.05 ± 0.19
finding-global-homophily-in-graph-neural85.74 ± 0.42
simple-and-deep-graph-convolutional-networks-182.92 ± 0.59
semi-supervised-classification-with-graph82.47 ± 0.27
joint-adaptive-feature-smoothing-and-topology81.38 ± 0.16
large-scale-learning-on-non-homophilous63.21 ± 0.39
addressing-heterophily-in-node-classification80.29 ± 0.41
revisiting-heterophily-for-graph-neural86.08 ± 0.43
simplifying-graph-convolutional-networks66.79 ± 0.27
revisiting-heterophily-for-graph-neural82.4 ± 0.48