HyperAI超神经

Named Entity Recognition Ner On Conll 2003

评估指标

F1

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称F1
named-entity-recognition-with-bidirectional91.62
promptner-prompt-locating-and-typing-for92.41
a-deep-neural-network-model-for-the-task-of91.22
empower-sequence-labeling-with-task-aware91.24
subregweigh-effective-and-efficient93.81
subregweigh-effective-and-efficient94.2
focusing-on-possible-named-entities-in-active93.6
learning-better-internal-structure-of-words91.64
neural-reranking-for-named-entity-recognition91.62
transfer-learning-for-sequence-tagging-with91.26
cloze-driven-pretraining-of-self-attention93.5
evaluating-the-utility-of-hand-crafted92.29
semi-supervised-sequence-modeling-with-cross92.61
a-prism-module-for-semantic-disentanglement91.8
named-entity-recognition-architecture93.28
transformer-based-named-entity-recognition-193.69
end-to-end-sequence-labeling-via-bi91.21
generalizing-natural-language-analysis-192.2
gollie-annotation-guidelines-improve-zero93.1
locate-and-label-a-two-stage-identifier-for92.94
semi-supervised-sequence-modeling-with-cross92.61
robust-multilingual-part-of-speech-tagging91.56
dice-loss-for-data-imbalanced-nlp-tasks93.33
efficient-contextualized-representation92.03
luke-deep-contextualized-entity94.3
hierarchical-contextualized-representation93.37
ncrf-an-open-source-neural-sequence-labeling91.35
baseline-needs-more-love-on-simple-word86.28
autoregressive-structured-prediction-with93.8
improved-differentiable-architecture-search93.47
promptner-prompt-locating-and-typing-for93.08
19091014892.4
harnessing-deep-neural-networks-with-logic91.18
multi-grained-named-entity-recognition92.28
tener-adapting-transformer-encoder-for-name92.62
a-unified-generative-framework-for-various93.24
a-unified-mrc-framework-for-named-entity93.04
robust-multilingual-named-entity-recognition91.36
pack-together-entity-and-relation-extraction94.0
hybrid-semi-markov-crf-for-neural-sequence91.38
diffusionner-boundary-diffusion-for-named92.78
模型 4291.74
hierarchical-contextualized-representation91.96
named-entity-recognition-architecture93.82
towards-improving-neural-named-entity92.75
autoregressive-structured-prediction-with94.1
exploring-cross-sentence-contexts-for-named93.74
automated-concatenation-of-embeddings-for-194.6
learning-from-noisy-labels-for-entity-centric94.22
evaluating-the-utility-of-hand-crafted91.87
sentence-state-lstm-for-text-representation91.57
robust-lexical-features-for-improved-neural91.73
joint-learning-of-named-entity-recognition92.43
boundary-smoothing-for-named-entity-193.65
automated-concatenation-of-embeddings-for-193.64
neural-architectures-for-named-entity90.94
contextual-string-embeddings-for-sequence93.09
grn-gated-relation-network-to-enhance92.34
inferner-an-attentive-model-leveraging-the93.76
flert-document-level-features-for-named94.09
parallel-instance-query-network-for-named92.87
named-entity-recognition-architecture88.63
neural-architectures-for-nested-ner-through-193.38
improving-named-entity-recognition-by93.35
deep-contextualized-word-representations92.22
named-entity-recognition-as-dependency93.5
gcdt-a-global-context-enhanced-deep93.47
improving-named-entity-recognition-by93.85
unified-named-entity-recognition-as-word-word93.07
crossweigh-training-named-entity-tagger-from93.43
variational-sequential-labelers-for-semi-184.7
long-short-term-memory-with-dynamic-skip91.56
gcdt-a-global-context-enhanced-deep91.96