HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
多假设三维人体姿态估计
Multi Hypotheses 3D Human Pose Estimation On
Multi Hypotheses 3D Human Pose Estimation On
评估指标
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
Paper Title
Repository
GFPose (HPJ2D-000, S=200)
35.6
30.5
16.9
GFPose: Learning 3D Human Pose Prior with Gradient Fields
Li et al.
73.9
44.3
-
Weakly Supervised Generative Network for Multiple 3D Human Pose Hypotheses
cGNF xlarge w Lsample
48.5
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
MDN
52.7
42.6
-
Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Network
D3DP
35.4
-
No
Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation
Sharma et al.
46.8
37.3
-
Monocular 3D Human Pose Estimation by Generation and Ordinal Ranking
GraphMDN
46.2
36.3
-
GraphMDN: Leveraging graph structure and deep learning to solve inverse problems
-
MHEntropy
-
36.8
-
MHEntropy: Entropy Meets Multiple Hypotheses for Pose and Shape Recovery
-
GFPose (HPJ2D-010, S=200)
35.1
-
-
GFPose: Learning 3D Human Pose Prior with Gradient Fields
cGNF w Lsample
53
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
0 of 10 row(s) selected.
Previous
Next