HyperAI超神经

Medical Image Segmentation On Etis

评估指标

mIoU
mean Dice

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称mIoUmean Dice
meganet-multi-scale-edge-guided-attention0.7090.789
using-duck-net-for-polyp-image-segmentation-10.87880.9354
rsaformer-a-method-of-polyp-segmentation-with-0.835
duat-dual-aggregation-transformer-network-for0.7460.822
stepwise-feature-fusion-local-guides-global0.7200.796
esfpnet-efficient-deep-learning-architecture0.7480.823
emcad-efficient-multi-scale-convolutional-0.9229
meta-polyp-a-baseline-for-efficient-polyp0.7040.78
promise-promptable-medical-image-segmentation0.7500.840
uacanet-uncertainty-augmented-context0.6890.766
medical-image-segmentation-via-cascaded0.72580.8007
resunet-an-advanced-architecture-for-medical0.75340.6364
pranet-parallel-reverse-attention-network-for0.56700.6280
meganet-multi-scale-edge-guided-attention0.6650.739
hardnet-mseg-a-simple-encoder-decoder-polyp0.6130.677
comma-propagating-complementary-multi-level0.6480.711
metaformer-and-cnn-hybrid-model-for-polyp0.91790.9572
transfuse-fusing-transformers-and-cnns-for0.6610.737
transfuse-fusing-transformers-and-cnns-for0.6590.733
hardnet-dfus-an-enhanced-harmonically-0.730
caranet-context-axial-reverse-attention0.6720.747
uacanet-uncertainty-augmented-context0.6150.694
sam-eg-segment-anything-model-with-egde0.6810.757
a-comprehensive-study-on-colorectal-polyp0.74580.6136