HyperAI超神经

Machine Translation On Iwslt2014 German

评估指标

BLEU score

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称BLEU score
attention-is-all-you-need34.44
random-feature-attention-134.4
time-aware-large-kernel-convolutions35.5
bi-simcut-a-simple-strategy-for-boosting-138.37
mask-attention-networks-rethinking-and36.3
wide-minima-density-hypothesis-and-the37.78
non-autoregressive-translation-by-learning31.15
classical-structured-prediction-losses-for32.84
bert-mbert-or-bibert-a-study-on38.61
pay-less-attention-with-lightweight-and34.8
autodropout-learning-dropout-patterns-to35.8
pay-less-attention-with-lightweight-and35.2
r-drop-regularized-dropout-for-neural37.25
guidelines-for-the-regularization-of-gammas35.1385
tag-less-back-translation28.83
19050659635.7
r-drop-regularized-dropout-for-neural37.90
data-diversification-an-elegant-strategy-for37.2
unidrop-a-simple-yet-effective-technique-to36.88
an-actor-critic-algorithm-for-sequence28.53
a-simple-but-tough-to-beat-data-augmentation37.6
bi-simcut-a-simple-strategy-for-boosting-137.81
deterministic-reversible-data-augmentation37.95
towards-neural-phrase-based-machine30.08
latent-alignment-and-variational-attention33.1
cipherdaug-ciphertext-based-data-augmentation37.53
sequence-generation-with-mixed36.41
muse-parallel-multi-scale-attention-for36.3
relaxed-attention-for-transformer-models37.96
multi-branch-attentive-transformer36.22
rethinking-perturbations-in-encoder-decoders36.22
integrating-pre-trained-language-model-into40.43
autoregressive-knowledge-distillation-through35.4
delight-very-deep-and-light-weight35.3