HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
图像超分辨率
Image Super Resolution On Set14 2X Upscaling
Image Super Resolution On Set14 2X Upscaling
评估指标
PSNR
SSIM
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PSNR
SSIM
Paper Title
Repository
DRCT-L
35.36
0.9302
DRCT: Saving Image Super-resolution away from Information Bottleneck
ML-CrAIST-Li
33.64
0.9213
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
CPAT
34.91
0.9277
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
SwinOIR
33.97
0.922
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
MWCNN
33.7
-
Multi-level Wavelet-CNN for Image Restoration
MaIR
34.75
0.9268
MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
-
CSRCNN
34.34
0.9240
Cascade Convolutional Neural Network for Image Super-Resolution
-
HAT-L
35.29
0.9293
Activating More Pixels in Image Super-Resolution Transformer
HAT
35.13
0.9282
Activating More Pixels in Image Super-Resolution Transformer
CPAT+
34.97
0.9280
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
DRCT
34.96
0.9287
DRCT: Saving Image Super-resolution away from Information Bottleneck
DRLN+
34.43
0.9247
Densely Residual Laplacian Super-Resolution
HBPN
33.78
0.921
Hierarchical Back Projection Network for Image Super-Resolution
DRCN [[Kim et al.2016b]]
33.04
-
Deeply-Recursive Convolutional Network for Image Super-Resolution
DnCNN-3
33.03
-
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
DBPN-RES-MR64-3
34.09
0.921
Deep Back-Projection Networks for Single Image Super-resolution
Deep CNN Denoiser
30.79
-
Learning Deep CNN Denoiser Prior for Image Restoration
HAT_FIR
35.17
-
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
ML-CrAIST
33.77
0.922
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
HAN+
34.24
0.9224
Single Image Super-Resolution via a Holistic Attention Network
0 of 35 row(s) selected.
Previous
Next