HyperAI超神经

Graph Property Prediction On Ogbg Code2

评估指标

Ext. data
Number of params
Test F1 score
Validation F1 score

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Ext. dataNumber of paramsTest F1 scoreValidation F1 score
semi-supervised-classification-with-graphNo110332100.1507 ± 0.00180.1399 ± 0.0017
graph-attention-networksNo110302100.1569 ± 0.00100.1442 ± 0.0017
adaptive-filters-and-aggregator-fusion-forNo109860020.1595 ± 0.00190.1464 ± 0.0021
structure-aware-transformer-for-graphNo157340000.1937 ± 0.00280.1773 ± 0.0023
模型 5No352468140.1751 ± 0.00490.1607 ± 0.0040
模型 6No636842900.1770 ± 0.00120.1631 ± 0.0090
adaptive-filters-and-aggregator-fusion-forNo109715060.1552 ± 0.00220.1441 ± 0.0016
recipe-for-a-general-powerful-scalable-graphNo124540660.18940.1739 ± 0.001
hierarchical-graph-representation-learningNo100958260.1401 ± 0.00120.1405 ± 0.0012
transformers-meet-directed-graphsNo143780690.2222 ± 0.00100.2044 ± 0.0020
模型 11No90532460.1830 ± 0.00240.1661 ± 0.0012
adaptive-filters-and-aggregator-fusion-forNo109920500.1570 ± 0.00320.1453 ± 0.0025
how-powerful-are-graph-neural-networksNo138418150.1581 ± 0.00260.1439 ± 0.0020
模型 14No143780690.2222 ± 0.00320.2044 ± 0.0020
how-powerful-are-graph-neural-networksNo123907150.1495 ± 0.00230.1376 ± 0.0016
adaptive-filters-and-aggregator-fusion-forNo111565300.1528 ± 0.00250.1427 ± 0.0020
模型 17No149528820.2018 ± 0.00210.1846 ± 0.0010
模型 18No75637460.1751 ± 0.00150.1599 ± 0.0009
semi-supervised-classification-with-graphNo124843100.1595 ± 0.00180.1461 ± 0.0013
directed-acyclic-graph-neural-networks-1--0.1751 ± 0.00490.1607 ± 0.0040
unlocking-the-potential-of-classic-gnns-for--0.1896 ± 0.00240.1742 ± 0.0027