Image Generation
Image generation (synthesis) is the task of generating new images from an existing dataset. Unconditional generation refers to generating samples unconditionally from the dataset, i.e., \(p(y)\); while conditional generation involves generating samples based on labels from the dataset, i.e., \(p(y|x)\). This section showcases the latest leaderboard for unconditional generation, while other types of image generation can be found in subtasks. Image generation holds significant application value in computer vision, being useful for data augmentation, artistic creation, and virtual reality, among other fields.
ImageNet 256x256
Discriminator Guidance
CIFAR-10
GMem
ImageNet 64x64
CTM (NFE 1)
FFHQ 256 x 256
Anycost GAN
ImageNet 512x512
MAGVIT-v2
CelebA 64x64
HDCGAN
ImageNet 32x32
StyleGAN-XL
LSUN Bedroom 256 x 256
StyleGAN (DINOv2)
STL-10
LSUN Churches 256 x 256
BOSS
ImageNet 128x128
ADM-G
FFHQ 1024 x 1024
Efficient-VDVAE
CelebA-HQ 256x256
BOSS
CelebA 256x256
StyleSwin
MNIST
Locally Masked PixelCNN (8 orders)
FFHQ-U
Alias-Free-R
FFHQ
Anycost GAN
Binarized MNIST
CR-NVAE
CelebA-HQ 1024x1024
StyleSwin
CIFAR-100
LeCAM (StyleGAN2 + ADA)
AFHQ Cat
Vision-aided GAN
LSUN Cat 256 x 256
Projected GAN
AFHQV2
Polarity-StyleGAN3
CelebA-HQ 128x128
COCO-GAN
Fashion-MNIST
GLF+perceptual loss (ours)
TextAtlasEval
AFHQ Dog
Vision-aided GAN
Cityscapes
GANformer
CLEVR
Projected GAN
LSUN Horse 256 x 256
StyleGAN2
AFHQ Wild
Vision-aided GAN
CelebA 128x128
U-Net GAN
Places50
SinDiffusion
ARKitScenes
GAUDI
CUB 128 x 128
Projected GAN
Pokemon 256x256
StyleGAN-XL
Replica
Stanford Cars
Projected GANs
Stanford Dogs
Projected GAN
VizDoom
VLN-CE
ADE-Indoor
CAT 256x256
StyleGAN2 + DA + RLC (Ours)
CelebA-HQ 64x64
COCO-GAN
CIFAR-10 (10% data)
DiffAugment-StyleGAN2
CIFAR-10 (20% data)
DiffAugment-StyleGAN2
FFHQ 128 x 128
Anycost GAN
FFHQ 512 x 512
Anycost GAN
LSUN Bedroom
StyleGAN
LSUN Bedroom 64 x 64
WGAN-GP + TTUR + Alex-Adam
MetFaces
MetFaces-U
ObjectsRoom
Pokemon 1024x1024
StyleGAN-XL
ShapeStacks
Stacked MNIST
VAEBM
AFHQ-v2 64x64
FFHQ 64x64
SiDA-EDM
iNaturalist 2019
StyeGAN2 + NoisyTwins
LSUN Bedroom 128 x 128
LadaGAN
LSUN Car 512 x 384
Polarity-StyleGAN2
Oxford 102 Flowers 256 x 256
MSG-StyleGAN
RC-49
cDR-RS
25% ImageNet 128x128
LeCAM + DA
CelebA
CelebA-HQ
DDPM
CelebA-HQ 512x512
WaveDiff
Cityscapes-25K 256x512
SB-GAN
Cityscapes-5K 256x512
SB-GAN
EMNIST-Letters
Spiking-Diffusion
FFHQ 64x64 - 4x upscaling
PFGM++
GQN
ImageNet 256x256 - 1 labeled data per class
ImageNet 256x256 - 1% labeled data
DPT
ImageNet 256x256 - 2 labeled data per class
ImageNet 256x256 - 5 labeled data per class
Indian Celebs 256 x 256
MSG-StyleGAN
KMNIST
Landscapes 256 x 256
CIPS
LLVIP
pix2pix
LSUN
BigGAN + gSR
LSUN Car 256 x 256
StyleGAN2
LSUN tower 64x64
DDPM-IP
Multi-dSprites
GENESIS
NASA Perseverance
Oxford 102 Flowers 128x128
QSNGAN
Satellite-Buildings 256 x 256
CIPS
Satellite-Landscapes 256 x 256
CIPS
SDSS Galaxies