Few-Shot Image Classification
Few-Shot Image Classification is a computer vision task aimed at training machine learning models to classify new images using only a few labeled samples (typically fewer than 6). The goal of this task is to enable the model to quickly recognize and classify new categories with minimal supervision and data requirements, thereby enhancing its generalization capability under conditions of limited data. This technology holds significant practical value, especially in scenarios where data acquisition is challenging or expensive.
Mini-Imagenet 5-way (1-shot)
PEMnE-BMS* (transductive)
Mini-Imagenet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (1-shot)
PT+MAP
CIFAR-FS 5-way (5-shot)
PT+MAP+SF+SOT (transductive)
CIFAR-FS 5-way (1-shot)
PT+MAP+SF+SOT (transductive)
CUB 200 5-way 1-shot
PT+MAP+SF+BPA (transductive)
CUB 200 5-way 5-shot
PT+MAP+SF+SOT (transductive)
FC100 5-way (1-shot)
R2-D2+Task Aug
FC100 5-way (5-shot)
Meta-Dataset
URT
OMNIGLOT - 1-Shot, 20-way
GCR
OMNIGLOT - 5-Shot, 20-way
MC2+
OMNIGLOT - 1-Shot, 5-way
MC2+
Mini-ImageNet - 1-Shot Learning
PT+MAP
OMNIGLOT - 5-Shot, 5-way
DCN6-E
Mini-Imagenet 10-way (1-shot)
Transductive CNAPS + FETI
Mini-Imagenet 10-way (5-shot)
Transductive CNAPS + FETI
Meta-Dataset Rank
URT
Tiered ImageNet 10-way (1-shot)
Transductive CNAPS + FETI
Tiered ImageNet 10-way (5-shot)
Transductive CNAPS + FETI
Dirichlet Mini-Imagenet (5-way, 1-shot)
alpha-TIM
Dirichlet Mini-Imagenet (5-way, 5-shot)
alpha-TIM
Mini-ImageNet-CUB 5-way (1-shot)
PT+MAP
Dirichlet Tiered-Imagenet (5-way, 1-shot)
Dirichlet Tiered-Imagenet (5-way, 5-shot)
alpha-TIM
Dirichlet CUB-200 (5-way, 1-shot)
Dirichlet CUB-200 (5-way, 5-shot)
ImageNet - 1-shot
ViT-MoE-15B (Every-2)
ImageNet - 5-shot
ViT-MoE-15B (Every-2)
ImageNet-FS (2-shot, novel)
ImageNet-FS (5-shot, all)
KGTN-ens (ResNet-50, h+g, max)
Mini-ImageNet-CUB 5-way (5-shot)
PT+MAP
Bongard-HOI
Human (Amateur)
ImageNet - 10-shot
ViT-MoE-15B (Every-2)
ImageNet-FS (1-shot, novel)
Mini-Imagenet 20-way (1-shot)
TIM-GD
Mini-Imagenet 20-way (5-shot)
TIM-GD
Stanford Dogs 5-way (5-shot)
Stanford Cars 5-way (1-shot)
MATANet
Stanford Cars 5-way (5-shot)
MATANet
CUB-200-2011 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
ImageNet - 0-Shot
CLIP (ViT B/32)
Mini-Imagenet 5-way (10-shot)
PT+MAP
CUB 200 50-way (0-shot)
Prototypical Networks
Caltech-256 5-way (1-shot)
CUB-200 - 0-Shot Learning
TAFE-Net
ImageNet-FS (5-shot, novel)
ORBIT Clutter Video Evaluation
ProtoNetsVideo
Stanford Dogs 5-way (1-shot)
MATANet
CIFAR100 5-way (1-shot)
ImageNet (1-shot)
ImageNet-FS (10-shot, novel)
ImageNet-FS (1-shot, all)
ImageNet-FS (2-shot, all)
ImageNet-FS (10-shot, all)
KGTN (ResNet-50)
Mini-ImageNet to CUB - 5 shot learning
TIM-GD
OMNIGLOT-EMNIST 5-way (1-shot)
HyperShot
OMNIGLOT-EMNIST 5-way (5-shot)
ORBIT Clean Video Evaluation
SimpleCNAPs + LITE
SUN - 0-Shot
Synthesised Classifier
aPY - 0-Shot
TAFE-Net
AWA - 0-Shot
Synthesised Classifier
AWA1 - 0-Shot
AWA2 - 0-Shot
Caltech-256 5-way (5-shot)
MergedNet-Concat
Caltech101
PRE
CIFAR-FS - 1-Shot Learning
pseudo-shots
CIFAR-FS - 5-Shot Learning
pseudo-shots
CUB-200-2011 5-way (1-shot)
MATANet
CUB-200-2011 5-way (5-shot)
MATANet
CUB 200 5-way
EASY 3xResNet12 (transductive)
FC100 5-way (10-shot)
MTL
Fewshot-CIFAR100 - 1-Shot Learning
pseudo-shots
Fewshot-CIFAR100 - 5-Shot Learning
pseudo-shots
Flowers-102 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
iNaturalist (227-way multi-shot)
LaplacianShot
iNaturalist 2018 - 1-shot
iNaturalist 2018 - 5-shot
iNaturalist 2018 - 10-shot
mini-ImageNet - 100-Way
GCR
miniImagenet → CUB (5-way 1-shot)
LaplacianShot
miniImagenet → CUB (5-way 5-shot)
LaplacianShot
OMNIGLOT - 1-Shot, 423 way
APL
OMNIGLOT - 1-Shot, 1000 way
APL
OMNIGLOT - 5-Shot, 423 way
APL
OMNIGLOT - 5-Shot, 1000 way
Oxford 102 Flower
RS-FSL
UT Zappos50K
CIFAR-100