Data-to-Text Generation
Data-to-Text Generation is a classic problem in the field of natural language processing, aiming to convert structured data into fluent and accurate natural language text. This task not only involves selecting appropriate content from the input data for description but also requires the use of surface realization techniques to generate natural and coherent expressions to meet the needs of different application scenarios, such as automatic report generation, weather forecasts, and news summaries.
WebNLG
Control Prefixes (A1, T5-large)
E2E NLG Challenge
S_1^R
WebNLG Full
Cleaned E2E NLG Challenge
DataTuner_FC
RotoWire
HierarchicalEncoder + NR + IR
RotoWire (Relation Generation)
Macro
ToTTo
T5-3B
XAlign
MULTIWOZ 2.1
T5-Base
RotoWire (Content Ordering)
Hierarchical Transformer Encoder + conditional copy
Rotowire (Content Selection)
Hierarchical Transformer Encoder + conditional copy
MLB Dataset (Relation Generation)
Macro
MLB Dataset
Macro
MLB Dataset (Content Ordering)
Macro
Czech Restaurant NLG
MLB Dataset (Content Selection)
DART
T5-B Baseline
E2E
self-mem + new data (random)
SR11Deep
Transition based Deep Input Linearization
ViGGO
DataTuner_FC
WebNLG en
WebNLG ru
AMR3.0
StructAdapt
GenWiki
WikiOFGraph
T5-large
Wikipedia Person and Animal Dataset